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Abstract. The High Atlas, culminating at more than 4000 m, is the water tower of Morocco. While plains receive less than 400

mm of precipitation in an average year, the mountains can get twice as much, often in the form of snow between November

and March. Snowmelt thus accounts for a large fraction of the river discharge in the region, and is particularly critical during

spring, as the wet season ends but the need for irrigation increases. In the same region, future climate change projections

point towards a significant decline in precipitation and enhanced warming of temperature. Understanding how the High Atlas5

snowpack will evolve under such trends is therefore of paramount importance to make informed projections of future water

availability in Morocco. Here, we build on previous research results on snow and climate modeling in the High Atlas to make

detailed projections of snowpack and river flow response to climate change in this region. Using a distributed energy balance

snow model based on SNOW-17, high-resolution climate simulations over Morocco, and a panel regression framework to relate

runoff ratios to regional meteorological conditions, we quantify the severe declines in snowpack and river discharge that are10

to be expected, even under a scenario of substantial mitigation of emissions. Our results have important implications for water

resources planning and sustainability of agriculture in this already water-stressed region.

1 Introduction

The High Atlas is the major source of freshwater for the semi-arid plains of central Morocco. Much of the discharge of the

Oum-Er-Rbia and Tensift, the two main rivers of central Morocco, comes from the mountainous terrain where they begin their15

course. In this region, precipitation essentially falls at elevations above 1000m (Boudhar et al., 2009); below that, it is scarce

and evaporation is extremely high, leading to minimal runoff. Though located in a rather warm region, the High Atlas rises up

to more than 4000m and often experiences below-freezing conditions between November and March (Boudhar et al., 2009).

Consequently, snow is a major component of the regional water cycle (Marchane et al., 2015; Tuel et al., 2020a). It accounts

for a substantial fraction of annual runoff, up to 50% in some mountain catchments (Boudhar et al., 2009), and for most of the20

runoff during spring, as the wet season comes to an end.

Still, climate projections over Morocco happen to agree on robust warming and drying trends under greenhouse gas forcing. By
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the end of this century, average winter temperatures in the High Atlas could be 2-4◦C higher, and precipitation 25-45% lower,

depending on the emissions scenario (Tuel et al., 2020b). Being already close to the 0◦C isotherm, the High Atlas stands out as

particularly vulnerable to snow cover loss. However, few studies have analyzed climate change impacts on the local snowpack25

and regional water availability. Applying a complex physically-based snow model to one station snow data series from the

Moroccan High Atlas, López-Moreno et al. (2017) found that Atlas snowpack was somewhat less sensitive to warming and

drying than that in other Mediterranean-climate regions, because of colder snowpack temperatures associated with high latent

heat losses. Still, their results pointed to a decrease in average snow duration of 25-30% and in mean Snow Water Equivalent

(SWE) of 30-55% by 2050. By contrast, the analysis of 12 years (2000-2013) of remotely-sensed snow cover area from the30

MODIS satellites yielded few significant trends in snow cover duration across the region (Marchane et al., 2015). At these

relatively short timescales, however, the variability in Atlas snow cover is primarily determined by the inter-annual variability

in wet-season precipitation, itself largely dependent on the North Atlantic Oscillation (Knippertz et al., 2003; Boudhar et al.,

2009). Because precipitation exhibits a large coefficient of annual variation (0.25), potential long-term climate trends will be

difficult to identify in such short-term series. Only one study tried to quantify the impact of climate change on High Atlas35

runoff by taking snow dynamics into account: Marchane et al. (2017) developed runoff projections for the Rheyara catchment,

south of Marrakech and part of the Tensift watershed, by running conceptual monthly water-balance models incorporating a

simple parametric snow module. They projected a 19 to 63% decline in surface runoff by the middle of the century, dependent

on model and scenario. Therefore, while it is clear that the region is headed towards a pronounced decline in snowpack and

runoff, much remains to be done to quantify that decline at the catchment level and reduce uncertainties.40

Recent work has shed light on the High Atlas snow water balance by applying a simple distributed snow model to recon-

struct snowpack within the Oum-Er-Rbia watershed. Tuel et al. (2020a) (hereafter T20a) assimilated remotely-sensed and

dynamically-downscaled data into a simple distributed snow model to reconstruct snowpack within the Oum-Er-Rbia water-

shed and quantify total snow water content and sublimation losses. Here, we build on this methodology by applying the same

snow modeling framework to the regional climate projections over Morocco developed by Tuel et al. (2020b) to assess the45

future of High Atlas snowpack under anthropogenic warming. In addition, we quantify the sensitivity of runoff in seven moun-

tain catchments within the Oum-Er-Rbia watershed to large-scale meteorological conditions, and use the results to assess the

impact of warming, drying and snowpack disappearance on runoff. The paper is structured as follows. Section 2 describes

the study area, the data and climate model output used in this study. Section 3 presents the snow model and panel regression

framework used to model runoff response to large-scale climate conditions. Snowpack and runoff projections are presented50

and discussed in Section 4. Finally, major results and implications are summarized in Section 6.

2 Study area and data

2.1 Study area

With a length of 550 km, the Oum-Er-Rbia is Morocco’s second longest river. There are about 4 km3 of available renewable

water resources in its basin each year, most of which comes from surface runoff (3.5 km3), the rest being groundwater. 90% of55
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this water is used to irrigate 350000 hectares of fields, accounting for 30% of Morocco’s irrigated land, with the rest supporting

the needs of two major cities, Casablanca and Marrakech, and industrial phosphate mining. In addition, mountain runoff is used

to generate hydroelectricity. The Oum-Er-Rbia river begins its course on the southern slopes of the Middle Atlas, northeast of

the city of Khenifra; as it flows westwards towards the Atlantic Ocean, it receives major contributions from northward-flowing

tributaries originating in the High Atlas (Fig. 1-a). Beyond that, the river continues its course in semi-arid plains which bring60

little additional runoff.

The annual cycle of temperature has a large amplitude (Knippertz et al., 2003). Minimum temperatures occur in January,

and range from -5◦C at high altitudes to 12◦C in the plains. Temperatures reach their peak in July, at about 35◦C below

1000m and 10-15◦C above 3000m (Ouatiki et al., 2017). Precipitation is sparse, even at high altitudes, with an average of

about 400mm for the whole basin. The lowest values are found in the lowland plains, at about 250mm annually, while the65

mountains to the south typically receive up to 800mm (Ouatiki et al., 2017). Most of that precipitation occurs between October

and May, when the region is under the influence of North Atlantic westerlies (Knippertz et al., 2003; Tuel and Eltahir, 2018)

(Fig. 1-b). Mountainous areas also experience substantial precipitation during summer, due to small-scale convection (Born

et al., 2008). As a consequence, vegetation outside the lower-elevation valleys is sparse, essentially limited to bare soil, grass

and occasional shrubs (Baba et al. 2019). Snowfall is common between November and March above 1500m elevation, and a70

somewhat persistent snowpack is not uncommon above 2500m (Marchane et al., 2015). Inter-annual variability is substantial,

however, following that of precipitation (Boudhar et al., 2010). Melt is rapid, beginning in March and typically lasting 1-2

months at most (Tuel et al., 2020a).

2.2 Hydroclimatological data

We use for this study a mixture of model-, station- and satellite-based hydrometeorological data. Model-based data is described75

in section 2.3. Daily precipitation data are available at seven stations in the study area, including three at more than 1200m

elevation, over the 1980-2015 period (Fig. 1-a). For each station, we discard the months for which more than 10% of the data is

missing. Daily discharge measurements are available at seven locations as well, between 1978 and 2015. Each has at most 0.5%

of missing data. These locations define seven sub-catchments for which runoff will be modeled, from north to south: Tarhat,

Chacha, Ouchene, Tillouguite, Moulay Hassan, Segmine and Tamesmate (Fig. 1-a). These sub-catchments include most of80

the area within the Oum-Er-Rbia watershed that receives significant snowfall (Marchane et al., 2015). Their average elevation

varies from 1460 to 2360m. We remove the contribution from base flow by subtracting the minimum monthly discharge value

for each catchment and each hydrological year (September-August). This correction is minor for all catchments except Tarhat,

the northernmost one, which includes the headwaters of the Oum-Er-Rbia river, and receives a substantial contribution of base

flow to its annual discharge. In particular, the flow at Tarhat remains high during summer (≈35% of its wet-season peak), likely85

due to groundwater discharge from deep mountain aquifers. Annual cycles of corrected monthly discharge are shown on Fig.

2-a.

Satellite-based data is used for basin-wide precipitation, temperature and snow cover. 3-hourly precipitation from the TRMM

TMPA (TRMM Multi-Satellite Precipitation Analysis) 3B42 version 7 dataset is used as the reference precipitation dataset for
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the region. It consists in remotely-sensed data corrected with rain gauge data on a monthly basis (Huffman et al., 2007). The90

data cover the period 1998 to present. While satellite-based precipitation data suffers from numerous biases (Milewski et al.,

2015; Derin et al., 2016; Hashemi et al., 2017), it is often the only option available in complex terrain where stations are scarce.

Milewski et al. (2015) and Ouatiki et al. (2017) assessed the accuracy of the TRMM 3B42 V7 dataset in the Oum-Er-Rbia and

found that, although unreliable at the daily timescale, it offered satisfactory estimates of precipitation if averaged in space or

time. Annual cycles of TRMM precipitation for the seven catchments are shown on Fig.1-b.95

For comparison, we also consider the CHIRPS dataset, available from 1981 onwards at a 0.05◦ resolution (Funk 2015). CHIRPS

is produced by combining high-resolution satellite-based precipitation with station and fine-scale topography data. In our region

of focus, TRMM and CHIRPS show some differences (Fig. 3-a,b): CHIRPS is notably wetter, particularly near the Tizi N’isly

station. A comparison of monthly values with the four available stations above 1000m suggests a rather dry bias in TRMM and

inconsistent biases in CHIRPS (Fig. 3-c,d). Both datasets have a dry bias over the north-eastern corner of our domain (around100

the Kenifra station). Across the four stations shown on Fig. 3, absolute biases range from 13.4mm to 25.6mm for TRMM and

from 18.6mm to 25.2mm for CHIRPS. Our purpose here is not to perform an in-depth comparison of the performance of the

two datasets, but to test the robustness of the runoff projection results to variability in reference precipitation. To bias-correct

regional climate model output for snow modeling (Section 3.1), however, we follow T20a and consider only the TRMM dataset.

Reference surface air temperature is derived from MODIS Land Surface Temperature (LST) product MOD11A1 L3 version 6105

at 1km resolution (Wan, Z., Hook, S., Hulley, 2015). We refer to T20a for details on data filling and correction. Observed snow

cover area for the region is extracted from the MODIS Terra snow cover daily L3 product (MOD10A1) at 500m resolution

(Hall and Riggs, 2016). Snow cover is detected using values of the Normalized-Difference Snow Index, based on reflectances

in the visible/near infrared and middle infrared. We apply the correction methodology described in Marchane et al. (2015)

which allows to substantially reduce the number of missing data points due, mainly, to cloud cover, and average the data at110

the weekly timescale as in T20a. We refer to these two studies for a discussion of the accuracy of the MODIS dataset in this

region. All MODIS data is available from February 2000 to present. Elevation data is taken from the Shuttle Radar Topography

Mission 90-meter resolution dataset version 4.1 (STRM90) (Jarvis et al., 2008), and interpolated to the approximately 1km

resolution of the MODIS land surface temperature data.

2.3 Regional climate simulations115

We consider the regional climate downscaling data and projections developed by Tuel et a. (2020b) for the Western Mediter-

ranean, at a 12km resolution, using the MIT Regional Climate Model (MRCM). MRCM is based on the Abdus Salam Inter-

national Centre for Theoretical Physics Regional Climate Model Version 3 (RegCM3) (Pal et al., 2007), but with significant

enhancements of model physics, and notably a coupling with the Integrated BIosphere Simulator land surface scheme (IBIS).

Dynamical downscaling is performed for ERA-Interim (1982-2011) (Dee et al., 2011) as well as three carefully-selected GCMs120

from the Coupled Model Inter-comparison Project Phase 5 (CMIP5) (Taylor et al., 2012): MPI-ESM-MR, GFDL-ESM2M and

IPSL-CM5A-LR, for the historical (1976-2005) and RCP4.5 and 8.5 (2071-2100) scenarios. Details of the simulations, includ-

ing model setup and performance, can be found in Tuel et al. (2020b).
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6-hourly wind speed, specific humidity, air temperature, precipitation, and downward longwave and shortwave are extracted

from the MRCM output over our domain. For all three GCM-driven simulations, as well as the ERA-Interim driven run (here-125

after referred to as ERA/MRCM), air temperature and precipitation data are statistically downscaled and bias-corrected at the

6-hourly timescale using MODIS LST-derived air temperature and TRMM precipitation at their native resolutions as respective

targets, via the CDF-transform method (Michelangeli et al., 2009). Alone among the three GCMs, the IPSL-CM5A-LR model

exhibits a negative bias in wet days that we correct at each grid cell by randomly generating wet days of magnitude drawn

from the corresponding distribution of wet-day precipitation in the TRMM dataset. For bias correction, reference periods for130

?perfect? observations are 1998-2011 for TRMM and 2000-2011 for MODIS. The corresponding periods in the simulations are

the same for ERA/MRCM, and the 1992-2005 and 1994-2005 periods, respectively, for each of the GCM-driven simulations.

All bias corrections are performed for the cold (November-April) and warm (May-October) seasons separately.

Additionally, we use wind speed, downward long- and shortwave radiation and specific humidity from the ERA/MRCM simu-

lation over the 1982-2005 period as reference, since no observations are available. The corresponding variables in each GCM-135

driven simulation are therefore bias-corrected using the ERA/MRCM data as target. Specific humidity is further downscaled

to the 1km MODIS LST resolution based on an empirical lapse-rate µ estimated at each time step:

log(q) = log(q12) +µ · (z− z12) (1)

where q12 is the specific humidity in a given 12-km resolution grid cell of elevation z12, and q the downscaled value at

elevation z.140

3 Methods

The methodological framework adopted in this study is summarized in Fig. 4. We start from GCM simulations from the CMIP5

archive, dynamically-downscaled with MRCM. We apply bias-correction to the MRCM output, which we then feed into a

1km-resolution snow model over our study region to reconstruct snowpack under the various emissions scenarios. Finally,

a statistical model is developed for catchment runoff coefficients (RCs), in order to make projections of runoff under future145

climate conditions.

3.1 Snow model

We apply the SNOW-17 model (Anderson, 2006) with a radiation-derived temperature index for melt (Follum et al., 2015) as

described in T20a. SNOW-17 simulates snow accumulation and loss based on meteorological variables, and accounts for the

various energy balance equation terms. Snowpack is characterized by its snow water content (SWE) and heat deficit, defined150

as the amount of heat (in equivalent mm of SWE) required to bring its temperature up to freezing point. We also integrate

the bulk-aerodynamic formulation of sublimation detailed in T20a. Readers are referred to Follum et al. (2015) and Anderson

(2006) for more details about SNOW-17.
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We run the model at a 6-hourly time step and at the native MODIS LST 1km resolution over the same 13104 km2 domain as

T20a, that encompasses the seven catchments shown on Fig. 1-a. Elevation in this domain ranges from 621m to 3890m, with155

an average of 1882m. SWE given by the model is then translated into snow cover fraction for each grid cell using the following

relationship:

SC = 0.8× tanh(k ·SWE) (2)

with k = 100. The snow model requires optimizing three parameters: Mf (melt factor), NMFmax (maximum negative melt

factor) and TIPM (coefficient used in updating snowpack temperature) (Anderson, 2006). In keeping with T20a, parameter160

calibration is performed by maximizing the Nash-Sutcliffe coefficient (Nash and Sutcliffe, 1970) between the annual cycles

of observed (MODIS) and simulated snow cover at 250 randomly selected grid points within the snow domain. We force the

elevation distribution of these 250 points to match that of the whole domain. The annual cycles are computed for the 1995-2005

period in the GCM-driven simulations, 2000-2011 period in the ERA-Interim simulation and 2000-2011 period in the MODIS

series. Parameter are calibrated independently for each of the simulations (ERA-Interim and three GCMs) in their respective165

reference periods. For the future simulations, parameter values are kept constant, equal to their calibrated values.

3.2 Statistical modeling of runoff coefficients

We model catchment runoff coefficients (RCs), defined as total October-May discharge divided by total October-May precip-

itation, across time and space as functions of large-scale hydrological variables by adopting a panel regression framework.

Panel regression allows to enhance the effective size of a dataset and to obtain more robust estimates of the response to se-170

lected covariates compared to more traditional regression approaches (Steinschneider et al., 2013; Davenport et al., 2020). It

also allows to account for static (space-dependent) and time-varying (time-dependent) factors, although here, with only seven

catchments, we do not have enough data to make robust statements about static factors responsible for the disparity in average

RC (Fig. 2-b). Therefore, we focus on time-varying covariates, and consider a fixed-effects formulation:

log(RCj,t) = log
(
RCj

)
+
∑

i

βiX
i
j,t + εj,t (3)175

where j ∈ {1, ...,7} is the catchment index, t is the time index, i is the covariate index, and RCj represents time-invariant,

watershed-specific fixed effects (drainage area, land cover, mean climate),Xi
j,t are the covariates, βi are regression coefficients

and εj,t is random noise. For covariates, we consider catchment-averaged October-May precipitation (P), relative humidity

(RH), temperature (T), snow water equivalent (SWE) and snow fraction of precipitation (SF). Enhanced precipitation or rela-

tive humidity lead to wetter soils and can be expected to be associated with higher RC values. Similarly, higher temperatures180

increase evapotranspiration and tend to decrease runoff. Finally, increased snow cover favors losses by sublimation and shifts

the distribution of runoff regimes towards slower runoff as opposed to rapid overland flow following rain storms. However,

6

https://doi.org/10.5194/hess-2020-622
Preprint. Discussion started: 18 December 2020
c© Author(s) 2020. CC BY 4.0 License.



larger snow cover may also increase the risk of rain-over-ice events, which tend to have very high runoff coefficients (Daven-

port et al., 2020).

Environmental model covariates are calculated using the ERA/MRCM run and associated snow model output, with tempera-185

ture and precipitation bias-corrected as described previously. While we rely on TRMM as the best gridded daily precipitation

dataset available for our area, its main drawback is that it covers only the post-1998 period. Using TRMM directly would limit

our analysis to a mere 18 years (1998-2015), likely insufficient given the region’s high inter-annual variability in precipitation.

Therefore, we use the ERA/MRCM precipitation data, bias-corrected with TRMM, to estimate catchment-scale precipita-

tion for the longer 1982-2011 period, during which runoff data are available for all catchments. This allows us to calculate190

catchment runoff coefficients (RCs), defined as observed total October-June discharge divided by estimated total October-June

precipitation. To assess the robustness of the results, we also calculate RCs based on CHIRPS precipitation (available from

1981-present).

Model selection is performed by stepwise regression: starting from a model with no covariates, covariates are added one at a

time in the order of highest improvement to model skill, as determined by its Akaike Information Criterion (AIC). At each step,195

we also test whether removing any of the currently selected variables and replacing it by one of the remaining, non-selected

ones, brings any improvement. To estimate the sensitivity of RC to changes in climate conditions, we modify covariate values

in the 1982-2011 ERA-Interim downscaled simulation by adding projected long-term changes in the GCM-driven simulations:

log
(
R̂C

m

j,t

)
= log

(
RCj

)
+
∑

i∈I
βi

(
Xi

j,t +X
i

m

)
(4)

where m ∈ {1,2,3} is model index, I is the set of optimal covariates, Xi
j,t are ERA-Interim downscaled covariate values and200

X
i

m represent long-term covariate changes drawn at random according to:

X
i

m ∼N
(
µi

m,rcp−µi
m,hist,

√
σi

m,rcp +σi
m,hist

)
(5)

where µi
m,s (respectively σi

m,s is the average (respectively standard deviation) of covariate i in modelm and scenario s. Results

for the three models are then pooled together to yield a future distribution for RCj,t.

4 Results and discussion205

4.1 Snowpack projections

Annual cycles of reconstructed snow cover as a function of elevation are shown on Fig. 5. Overall, all models succeed in

accurately reproducing snow cover dynamics in the region, although the ERA-Interim simulation tends to have a positive bias

at high elevations, particularly above 3000m (Fig. 5-b) and all simulations have a negative bias at low elevations (Figs. 5-

d,e and 6-a,b). The GCM-driven experiments generally show too little snow cover, and a later snowpack build-up (Fig. 5-f).210
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December-March average snow cover over the whole modeled area reaches 1460 km2 in MODIS observations but only 1275

km2 in the ERA-Interim driven run and 1185 km2 in the ensemble mean historical average – a bias largely concentrated at

low elevations. Additionally, despite the statistical downscaling of the MRCM output to 1km, elevation-driven gradients in

snow cover are also less sharp in the MRCM experiments compared to observations (Fig. 6-a,b). All results tend to remain

however in a narrow band around the MODIS values and, except for elevations below 2000m, inter-model spread generally215

covers observed snow cover values. Inter-annual variability in basin-wide snow cover is lower in the simulations compared to

MODIS (standard deviation of 220-440 km2 compared to 480 km2 in MODIS) but the discrepancy is mainly due to the negative

bias at low elevations, where snow plays a much more limited role in the overall water balance (T20a). Unsurprisingly, future

projections show a stark decline in snow cover across all the region (Figs. 6, 7). The greatest relative decline is at low elevations,

as expected since they are already seldom above the 0◦C line (Boudhar et al., 2016). Above 2500m, projections still exhibit a220

30-40% decrease in snow cover area under RCP4.5 and 50-60% decrease under RCP8.5. Projected trends are even steeper in

terms of snowpack water content (Fig. 8): it is reduced on average by 60% under RCP4.5 and 80-85% under RCP8.5, bringing

peak SWE value from about 125 million m3 (MCM) down to 20 MCM (Figs. 8-f, 9). The corresponding projected wet-season

precipitation declines are about 25% under RCP4.5 and 40-45% under RCP8.5 (Tuel et al., 2020b). Because most areas in the

High Atlas are very close to the zero-degree line, even at high elevations, warming trends largely amplify the precipitation225

signal and result in larger relative SWE declines. Warming causes the percentage of solid precipitation to decrease, particularly

at mid-elevations (2000-2500m) (Fig. 10) and also favors melt during winter, thus preventing the build-up of the snowpack.

As discussed in T20a, the historical SWE peak of 125 MCM is subject to caution; experiments with enhanced precipitation or

reduced temperatures suggest it may in fact be as high as 200 MCM. Still, while inter-model spread is large in the historical

experiments (≈60MCM) and still large (≈40MCM) in the RCP4.5 experiment, it is reduced to almost zero under RCP8.5.230

Whatever the historical disparity in temperatures or precipitation between models, all models agree on the quasi-absence of

snowpack under business-as-usual. This is consistent with observations that in mountain regions, above-freezing temperatures

are common, even at high altitudes, where average winter temperatures are not far from freezing (López-Moreno et al., 2017).

Therefore, under the RCP8.5 scenario, the projected 4◦C warming (Tuel et al. 2020b) would regularly bring all areas but the

very highest peaks well above freezing, and prevent seasonal snowpack accumulation.235

Due to the particularly arid climate of the High Atlas, sublimation losses are quite significant in our study area: about 9%

of all snowfall on average, and up to 30% above 3500m (Schulz and de Jong (2004); López-Moreno et al. (2017),T20a).

Annual relative sublimation losses are strongly linked to annual-mean precipitation (Fig. 11-a). Losses from latent heat fluxes

are much smaller during wet years as compared to dry years, a relationship robust across all experiments. Wet years indeed

bring higher RH over the region, due to enhanced moisture advection from the Atlantic which more than compensates for the240

larger heat advection and increased air temperatures that also occur in parallel (Knippertz et al., 2003). In addition to higher

RH limiting evaporation and increasing soil moisture, warmer temperatures in wetter years also tend to decrease the snow-

to-precipitation ratio, thus leading to reduced relative sublimation losses. Consequently, we expect the runoff coefficient to be

higher in wet years. Under future climate conditions, average relative humidity will decline by 3-6% (Tuel et al., 2020b), and

thus sublimation rates will be higher when snow is present. However, because the snow-to-precipitation ratio will also sharply245
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decline due to rising temperatures, the overall loss of annual precipitation by sublimation will tend to decrease by about a third

(Fig. 11-b).

For the areas as a whole, decreasing precipitation and warmer temperatures are the primary causes of the projected decline in

snowpack. In addition, drier soils together with enhanced absorption of solar energy where snowpack disappears will also lead

to enhanced warming locally, driving yet further snowpack melt. We do not explicitly take this into account in our model. In250

particular, the snow albedo effect is largely absent from the MRCM simulations due to their 12km resolution, which is still too

coarse to represent the complex topography. For areas at the highest elevations (near 4000m) which may still remain largely

below freezing in future winters, melt may not increase very significantly in the middle of winter; however, a drier atmosphere

will still be associated with reduced precipitation and increased sublimation losses, which will play a critical role in reducing

the snowpack.255

4.2 Runoff modeling and projections

The panel regression and model selection framework are applied to runoff coefficients and selected covariates over the 1982-

2011 period. Stepwise regression yields as optimal covariates relative humidity and snow fraction. The adjusted r2 is equal to

0.30, meaning that these two covariates explain a small third of inter-annual variability in RC. Fitted RCs against observations

are shown on Fig. 12. Consistent with the model r2, fitted values have a much smaller variance. Still, for all the catchments,260

except Segmine, we observe a significant positive relationship between fitted and observed values. The coefficients for RH and

snow fraction are both significant, with βRH > 0 and βSF < 0 (Table 1). All else being equal, a larger RH yields more runoff

– consistent with previous studies (Wang et al., 2016; Duan et al., 2017) – and more of the precipitation falling as snow yields

less runoff. These results are robust to the choice of the precipitation dataset. When using the CHIRPS dataset, average RCs

are generally lower, due to CHIRPS?s wet bias compared to TRMM (Fig. 3); the optimal RC model includes RH and SF as265

well, but also precipitation as a third variable (Table 1). The values of βRH and βSF obtained with CHIRPS data are similar,

although βSF is slightly less significant.

For both precipitation datasets, the effect of RH on runoff coefficient, as measured by the respective regression coefficient

βRH , is 3-5 times that of snow. As discussed above, we can understand the influence of snow fraction by noting that a higher

snow fraction means more opportunity for sublimation, particularly large at high elevations, and evaporation of melted snow,270

consistent with our analysis of sublimation losses (Fig. 11). Precipitation in the area tend to occur in short and intense storms,

and quickly saturate the dry soil, leading to rapid overland flow with limited opportunity for evaporation (El Khalki et al.,

2018). By comparison, snowmelt is slow and leads to a more gradual surface flow with the potential for higher evaporative

losses in this climate where evaporation tends to be water-limited. More winter snow also leads to a higher likelihood of rain-

on-snow episodes in spring, known to cause rapid flooding due to high runoff efficiencies (Davenport et al., 2020). More snow275

may also mean more opportunity for infiltration and aquifer recharge (Hssaisoune et al., 2020); however, in six out of seven

catchments considered here, base flow is negligible. Still, aquifer discharge may occur naturally further down the mountains,

or artificially via direct groundwater pumping in the agricultural plains. Compared to surface runoff, groundwater remains a

small fraction of water use in the Oum-Er-Rbia basin (<15%), and even less of available renewable water since aquifers are
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largely overdrawn (Hssaisoune et al., 2020). Groundwater data are quite scarce in this region; we make the choice of purely280

focusing on surface runoff, keeping in mind that a more complete picture of basin-wide water availability would also require

taking aquifer fluxes into account.

Future runoff projections are characterized by consistent, steep declines in runoff coefficients of 5-17% under RCP4.5 and

15-30% under RCP8.5 (Fig. 13-a). The impact of decreasing RH largely dominates over that of declining snow fraction. Tarhat

and Chacha, the two watersheds which already receive almost no snow in the present climate, exhibit the greatest relative285

RC decline, whereas in other watersheds, decreases in snow fraction help limit the decline in RC (Table 2). Combining now

precipitation and runoff coefficient estimates, we find a 20-40% decrease in runoff in the RCP4.5 experiments, compared to

a 50-65% decline under RCP8.5 (Fig. 13-b, Table 2). Decreases in precipitation drive most of the runoff trends, especially in

the RCP8.5 scenario. Projected RC declines are about the same when using CHIRPS data for the analysis, although tend to be

slightly higher, on average by 3-6% on average (not shown). Our projected runoff trends are consistent with those of El Moçayd290

et al. (2020) who focused on catchments part of the Sebou watershed, where snow plays a much smaller role than in our region

(Marchane et al., 2015). This is not surprising given the weak impact of the declining snow fraction on runoff coefficients,

compared to that of the relative humidity decline. As a final note, one can ask whether observed runoff trends are consistent

with these projections. At the country scale, government data indicates that river discharge has indeed significantly declined

over the last 60 to 70 years, at a rate of about 5% per decade (Fig. A1). The wet years of the 1960s tend however to bias the295

result towards a steeper decline than expected. In this case, natural decadal variability linked to the North Atlantic Oscillation

acted in the same direction as the expected climate change response. Runoff data from the seven sub-catchments studied here

are less clear. They cover shorter time periods (by about 25 years) and, more importantly, begin in the late 1970s, just when the

climate turned much drier in Morocco; drier-than-average conditions indeed prevailed from 1980 to the mid-1990s, associated

with increased frequency in the positive phase of the North Atlantic Oscillation. Thus, runoff trends tend to be slightly positive300

(about +1%/yr), though none are significant, even at the 10% level.

5 Conclusions

Based on the robust understanding of its snow water balance in the current climate, we quantified in this final chapter the

response of the High Atlas snowpack to climate change using high-resolution downscaled climate projections. Unsurprisingly,

given the warming and drying trends projected by climate models for this region, we find that the High Atlas snowpack will305

significantly decline, even with substantial mitigation of emissions. By the end of the century, snow may become a rarity below

2000m, and even near the highest peaks, snowpack water equivalent could decline by 80%. Precipitation decreases of 40-60%

are responsible for much of these trends, with background warming accounting for the rest.

The analysis of runoff coefficients for seven mountain catchments showed that a third of their inter-annual variability could

be explained by large-scale meteorological factors like snow fraction of precipitation and relative humidity. Interestingly, in310

this region, a larger snow fraction leads to less runoff. While the reverse is believed to be true at higher latitudes (Berghuijs

et al., 2014), this finding is consistent with other analyses in warm, semi-arid regions that receive substantial amounts of snow
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during winter (Davenport et al., 2020). Warmer conditions tend to enhance runoff efficiencies by reducing snowpack, thus

limiting sublimation losses and the slow melting of snow, propitious to evaporation, and by increasing the likelihood of rain-

on-snow events that tend to cause high runoff efficiencies. While decreasing snowfall will partly compensate for the projected315

atmospheric drying over the region, runoff coefficients will tend to decline by 5-30% depending on catchment and scenario.

Combined with precipitation trends, basin-wide runoff could be reduced by 60% in the worst case. In addition, earlier snowmelt

will likely lead to lower soil moisture levels during spring, further enhancing the temperature rise and increasing the risk of

late-season droughts.

The robust physical understanding behind large-scale projections for the region (Tuel and Eltahir, 2020) increases the likelihood320

that the dire projections detailed above will be realized provided greenhouse gas emissions are not brought under control. This

would deal a severe blow to the region, jeopardizing its agriculture-based economy and the livelihood of millions of smallholder

farmers. Agriculture, which accounts for 90% of current water use, will have no choice but to adapt. A 40-60% precipitation

decline would make rainfed agriculture infeasible. At the same time, availability of water for irrigation will also decline sharply.

A change of cropping patterns, like a transition to tree crops with less water demand and higher economic value like olives,325

will likely be unavoidable for Morocco to adapt to this future reality.
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Table 1. Runoff coefficient model results. The bottom three lines show coefficient values (left-hand column) and their statistical significance

(p-value, right-hand column).

MRCM-BC CHIRPS

r2 0.30 0.36

SF -1.84 4E-03 -1.47 2E-02

RH 5.71 2E-05 8.71 1E-09

Pr – – 2.04E-03 1E-06
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Figure 1. (a) Map of study area, the Oum-Er-Rbia watershed, with elevation shown in filled contours. The main waterways are indicated

by solid blue lines. Blue diamonds and red circles indicate the location of precipitation and river discharge stations, respectively. The seven

catchments defined by the discharge stations are indicated by numbers: (1) Tarhat, (2) Chacha, (3) Ouchene, (4) Tillouguite, (5) Moulay

Hassan, (6) Segmine and (7) Tamesmate. The location of the Oukaimeden snow station, outside our study area, is shown by a black cross.

(b) Annual cycles of precipitation for the seven catchments, based on TRMM data (1998-2015).
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Figure 2. (a) Annual cycles of monthly runoff at the seven runoff gauges, after base flow removal and normalization by catchment area

(km2). (b) Boxplot of annual runoff coefficients for the seven catchments (1982-2011), using ERA/MRCM precipitation bias-corrected with

TRMM data.
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Figure 3. (a) October-May average precipitation (mm) over the Oum-Er-Rbia watershed, from TRMM (1998-2015). The four available

precipitation stations above 1000m elevation are indicated by symbols. (c) Monthly precipitation at the four stations shown on (a) against

corresponding TRMM values. (b,d) Same as (a,c) but for the CHIRPS dataset (1981-2015).
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Figure 4. Summary of methodology to assess climate change impacts on snowfall, snowpack and runoff in the Oum-Er-Rbia watershed.
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Figure 5. Annual cycles of snow cover (in %) in the MODIS observations (black), ERA- Interim simulation (dashed red) and three GCM-

driven historical simulations (solid blue: me- dian; blue shading: 3-model range), at various elevations ranges within our study area: (a) >

3500m, (b) 3000-3500m, (c) 2500-3000m, (d) 2000-2500m, (e) 1500-2000m and (f) whole area.
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Figure 6. Mean December-to-March (DJFM) fractional snow cover (%) over the basin in (a) MODIS (2000-2010) data, and (b-d) three-GCM

average under the (b) historical (1976-2005), (c) RCP4.5 (2071-2100) and (d) RCP8.5 (2071-2100) experiments.

22

https://doi.org/10.5194/hess-2020-622
Preprint. Discussion started: 18 December 2020
c© Author(s) 2020. CC BY 4.0 License.



Oct Dec Feb Apr Jun Aug
0

20

40

60

80

S
no

w
 C

ov
er

 (
%

) a

Oct Dec Feb Apr Jun Aug
0

15

30

45

60

S
no

w
 C

ov
er

 (
%

) b

Oct Dec Feb Apr Jun Aug
0

10

20

30

40

S
no

w
 C

ov
er

 (
%

) c

Oct Dec Feb Apr Jun Aug
0

10

20

30

S
no

w
 C

ov
er

 (
%

) d

Oct Dec Feb Apr Jun Aug
0

2

4

S
no

w
 C

ov
er

 (
%

) e

Oct Dec Feb Apr Jun Aug
0

10

20

S
no

w
 C

ov
er

 (
%

) f

Figure 7. Annual cycles of snow cover (in %) in the three GCM-driven experiments under the historical (blue, 1976-2005), RCP4.5 (purple,

2071-2100) and RCP8.5 (red, 2071-2100) scenarios, at various elevations ranges within our study area: (a) > 3500m, (b) 3000-3500m,

(c) 2500-3000m, (d) 2000-2500m, (e) 1500-2000m and (f) whole area. Solid lines represent the three-model medians and the shading

corresponds to the three-model spreads.
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Figure 8. Same as Fig. 7, but for average snow water equivalent (mm, left-hand axis) and corresponding total snow water content (million

m3, MCM).
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Figure 9. Distribution of cumulative basin-wide SWE with elevation in the GCM-driven experiments, under the historical (black), RCP4.5

(purple) and RCP8.5 (red) scenarios. SWE is normalized in each model by that model?s historical total basin-wide SWE.
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Figure 10. (a-b) Snow fraction of annual precipitation in the (a) historical and (b) RCP8.5 scenario (average between all three GCM-driven

simulations). (c) Snow fraction of annual precipitation as a function of elevation, in each scenario (historical, RCP4.5 and RCP8.5; three-

model average) and in the assimilated control simulation of T20a.
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Figure 11. (a) Fraction of annual precipitation lost by sublimation against total annual precipitation in the MRCM downscaled experiments

forced with ERA-Interim (1982-2011, magenta), the three GCMs (1976-2005): MPI-ESM-MR (blue), GFDL-ESM2M (cyan) and IPSL-

CM5A-LR (black), and the assimilated snow run forced with MODIS and TRMM data only (red, data from T20a). (b) Fraction of annual

precipitation lost by sublimation as a function of altitude range in our study area, for the assimilated run from T20a and in the various

downscaled experiments, for historical (1976-2005, "+") and RCP8.5 (2071-2100, "∆") scenarios.
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Figure 12. Fitted runoff coefficient values against observed values (defined with TRMM precipitation), for the seven catchments in our study

area. Best-fit linear regression lines are shown by dashed lines.
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Figure 13. (a) Average runoff coefficients for the seven catchments in the observations (black), and projected average values in the RCP4.5

(blue) and RCP8.5 (red) scenarios. Boxes rep- resent 90% confidence intervals. (b) Projected relative changes in runoff across the seven

catchments against relative change in snow fraction (x-axis) and change in catchment-wide relative humidity (y-axis), for the RCP4.5 (blue)

and RCP8.5 (red) scenarios.
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Figure A1. Annual water resources (km3) in Morocco, 1945-2009. Source: Direction de la Recherche et de la Planification de l’Eau, Rabat.

A linear regression fit is shown by the dashed line (p-value: 0.07).
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